
V1 V2

V4 V3

Unit 4

Non Linear Data Structures - Graphs

4.1 DEFINITION

A graph G = (V, E) consists of a set of vertices, V and set of edges E.

Vertics are referred to as nodes and the arc between the nodes are referred to as Edges. Each

edge is a pair (v, w) where v, w V. (i.e.) v = V1, w = V2...

Fig. 4.1

Here V1, V2, V3, V4 are the vertices and (V1, V2), (V2, V3), (V3, V4), (V4, V1), (V2, V4), (V1,

V3) are edges.

4.2 REPRESENTATION OF GRAPH

Graph can be represented by Adjacency Matrix and Adjacency list.

One simple way to represents a graph is Adjacency Matrix.

The adjacency Matrix A for a graph G = (V, E) with n vertices is an n x n matrix, such that

Aij = 1, if there is an edge Vi to Vj

Aij = 0, if there is no edge.

Adjacency Matrix For Directed Graph

V1 V2 V3 V4

V1

V2

V3

V4

Fig. 4.2.1 Fig. 4.2.2

V1 V2

V3 V4

0 1 1 0

0 0 0 1

0 1 0 0

0 0 1 0

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

4.2 Introduction to Data Structures and Algorithms

Example V1,2 = 1 Since there is an edge V1 to V2

Similarly V1,3 = 1, there is an edge V1 to V3

V1,1 & V1,4 = 0, there is no edge.

Adjacency Matrix For Undirected Graph

V1 V2 V3 V4

V1

V2

V3

V4

Fig. 4.2.3 Fig. 4.2.4

Adjacency Matrix For Weighted Graph

To solve some graph problems, Adjacency matrix can be constructed as

Aij = Cij, if there exists an edge from Vi to Vj

Aij = 0, if there is no edge & i = j

If there is no arc from i to j, Assume C[i, j] = where i j .

V1 V2 V3 V4

Advantage

Fig. 4.2.5

V1

V2

V3

V4

Fig. 4.2.6

* Simple to implement.

Disadvantage

* Takes O(n2) space to represents the graph

* It takes O(n2) time to solve the most of the problems.

Adjacency List Representation

In this representation, we store a graph as a linked structure. We store all vertices in a list

and then for each vertex, we have a linked list of its adjacency vertices

V1 V2

V3 V4

V1
3

V2

9 1 7

V3 V4

8

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

0 3 9

 0 7

 1 0

 1 8 0

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Typewriter
7

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

4.2 Introduction to Data Structures and Algorithms

Adjacency List

1

2

3

4

5

6

7

Fig. 4.2.7

4.3 TYPES OF GRAPH

Directed Graph (or) Digraph

Directed graph is a graph whichconsists of directed edges, where each edge in E is

unidirectional. It is also referred as Digraph. If (v, w) is a directed edge then (v, w) # (w, v)

(V1, V2) (V2, V1)

Fig. 4.3.1

Undirected Graph

An undirected graph is a graph, which consists of undirected edges. If (v, w) is an

undirected edge then (v,w) = (w, v)

(V1, V2) = (V2, V1)

Fig. 4.3.2

Weighted Graph

A graph is said to be weighted graph if every edge in the graph is assigned a weight or value.

It can be directed or undirected graph.

6

7

7 6 5 3

6

5 4

4 3 2

V1 V2

V3

V1 V2

V3

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Non Linear Data Structures - Graphs 4.4

V1 V2

V3 V4

V1 V2

Fig. 4.3.4 (a) Fig. 4.3.4(b)

Complete Graph

A complete graph is a graph in which there is an edge between every pair of vertics. A

complete graph with n vertices will have n (n - 1)/2 edges.

Fig. 4.3.5 Fig. 4.3.5 (a) Vertices of a graph

In fig. 4.3.5

Number of vertics is 4

Number of edges is 6

(i.e) There is a path from every vertex to every other vertex.

A complete digraph is a strongly connected graph.

Strongly Connected Graph

If there is a path from every vertex to every other vertex in a directed graph then it is said to

be strongly connected graph. Otherwise, it is said to be weakly connected graph.

Path

Fig. 4.3.6 Strongly Connected Graph Fig. 4.3.7 Weakly Connected Graph

A path in a graph is a sequence of vertices 1 ,2 ,n such that i ,i1 E for

1 i N . Referring the Fig. 4.3.7 the path from V1 to V3 is V1, V2, V3.

V1 V2

V3

V1 V2

V3

V1

V2 V3

V1

V3 V2

V3 V4

Administrator
Typewriter
2

Administrator
Typewriter
3

Administrator
Typewriter
1

Administrator
Typewriter
2

Administrator
Typewriter
3

Administrator
Typewriter
1

Administrator
Highlight

Administrator
Typewriter
4(4-1)/2=12/2=6

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Non Linear Data Structures - Graphs 4.5

1 2

3

V1 V2

V3 V4

Length

The length of the path is the number of edges on the path, which is equal to N-1, where N

represents the number of vertices.

The length of the above path V1 to V3 is 2. (i.e) (V1, V2), (V2, V3).

If there is a path from a vertex to itself, with no edges, then the path length is 0.

Loop

loop.

If the graph contains an edge (v, v) from a vertex to itself, then the path is referred to as a

Simple Path

A simple path is a path such that all vertices on the path, except possibly the first and the last

are distinct.

A simple cycle is the simple path of length atleast one that begins and ends at the same

vertex.

Cycle

A cycle in a graph is a path in which first and last vertex are the same.

Fig. 4.3.8

A graph which has cycles is referred to as cyclic graph.

Degree

The number of edges incident on a vertex determines its degree. The degree of the vertex V

is written as degree (V).

The indegree of the vertex V, is the number of edges entering into the vertex V.

Similarly the out degree of the vertex V is the number of edges exiting from that vertex V.

Fig. 4.3.9

In fig. 7.1.9

Indegree (V1) = 2

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Non Linear Data Structures - Graphs 4.6

A

B C

D
E

Outdegree (V1) = 1

ACyclic Graph

A directed graph which has no cycles is referred to as acyclic graph. It is abbreviated as

DAG.

DAG - Directed Acyclic Graph.

Fig. 4.3.10

4.4 GRAPH TRAVERSAL

A graph traversal is a systematic way of visiting the nodes in a specific order. There are two

types of graph traversal namely,

 Depth first traversal

 Breadth first traversal

Breadth First Traversal

Breadth First Search (BFS) of a graph G starts from an unvisited vertex u. Then all

unvisited vertices vi adjacent to u are visited and then all unvisited vertices wj adjacent to

vi are visited and so on. The traversal terminates when there are no more nodes to visit.

Breadth first search uses a queue data structure to keep track of the order of nodes whose

adjacent nodes are to be visited.

Steps to implement breadth first search

Step 1: Choose any node in the graph, designate it as the search node and mark it

as visited.

Step 2: Using the adjacency matrix of the graph, find all the unvisited adjacent nodes

to the search node and enqueue them into the queue Q.

Step 3: Then the node is dequeued from the queue. Mark that node as visited and

designate it as the new search node.

Step 4: Repeat step 2 and 3 using the new search node.

Step 5: This process continues until the queue Q which keeps track of the adjacent

nodes is empty.

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Non Linear Data Structures - Graphs 4.7

Void BFS (vertex u)

{

Initialize queue Q;

visited [u] = 1;

Enqueue (u, Q);

while (! Isempty(Q))

{

u = Dequeue (Q);

print u;

for all vertices v adjacent to u do

if (visited [v] = = 0) then

{

Enqueue (v, Q)

visited [v] = 1;

}

}

}

Routine for breadth first search

Example:

Adjacency matrix

Figure 4.4.1

A B C D

A

B

C

D

Figure 4.4.2

A B

C D

0 1 1 0

1 0 1 1

1

1

0

1

0

1

1

0

Non Linear Data Structures - Graphs 4.8

A

B C

D

Implementation

1. Let ‗A‘ be the source vertex. Mark it to as visited.

2. Find the adjacent unvisited vertices of ‗A‘ and enqueue then into the queue.

Here B and C are adjacent nodes of A

and B and C are enqueued.

.........

3. Then vertex ‗B‘ is dequeued and its adjacent vertices C and D are taken

from the adjacency matrix for enqueuing. Since vertex C is already in the

queue, vertex D alone is enqueued.

.........

Here B is dequeued, D is enqueued.

4. Then vertex ‗C‘ is dequeued and its adjacent vertices A, B and D are found

out. Since vertices A and B are already visited and vertex D is also in the

queue, no enqueue operation takes place.

.........

Here C is dequeued

5. Then vertex ‗D‘ is dequeued. This process terminates as all the vertices

are visited and the queue is also empty.

Figure 4.4.3: Breadth first spanning tree

Applications of breadth first search

1. To check whether the graph is connected or not.

D C

C B

D

Administrator
Highlight

Non Linear Data Structures - Graphs 4.9

Void DFS (Vertex V)

{

visited [V] = True;

for each W adjacent to V

if (! visited [W])

Dfs (W);

}

4.5 DEPTH FIRST SEARCH

Depth first works by selecting one vertex V of G as a start vertex ; V is marked visited.

Then each unvisited vertex adjacent to V is searched in turn using depth first search recursively.

This process continues until a dead end (i.e) a vertex with no adjacent unvisited vertices is

encountered. At a deadend, the algorithm backsup one edge to the vertex it came from and tries to

continue visiting unvisited vertices from there.

The algorithm eventually halts after backing up to the starting vertex, with the latter being

a dead end. By then, all the vertices in the same connected component as the starting vertex have

been visited. If unvisited vertices still remain, the depth first search must be restarted at any one of

them.

To implement the Depthfirst Search perform the following Steps :

Step : 1 Choose any node in the graph. Designate it as the search node and mark it as

visited.

Step : 2 Using the adjacency matrix of the graph, find a node adjacent to the search.

node that has not been visited yet. Designate this as the new search node and

mark it as visited.

Step : 3 Repeat step 2 using the new search node. If no nodes satisfying (2) can be

found, return to the previous search node and continue from there.

Step : 4 When a return to the previous search node in (3) is impossible, the search from

the originally choosen search node is complete.

Step : 5 If the graph still contains unvisited nodes, choose any node that has not been

visited and repeat step (1) through (4).

Routine for Depth First Search

Non Linear Data Structures - Graphs 4.1
0

A B

C D

A

B

D

C

Example : -

Adjacency Matrix

A

B

C

D

Fig. 4.5

A B C D

Implementation

1. Let ‗A‘ be the source vertex. Mark it to be visited.

2. Find the immediate adjacent unvisited vertex ‗B‘ of ‗A‘ Mark it to be visited.

3. From ‗B‘ the next adjacent vertex is ‗d‘ Mark it has visited.

4. From ‗D‘ the next unvisited vertex is ‗C‘ Mark it to be visited.

Depth First Spanning Tree

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

Non Linear Data Structures - Graphs 4.1

A

B D E

C

A

B

Applications of Depth First Search

1. To check whether the undirected graph is connected or not.

2. To check whether the connected undirected graph is Bioconnected or not.

3. To check the a Acyclicity of the directed graph.

4.5.1 Undirected Graphs

A undirected graph is ‗connected‘ if and only if a depth first search starting from any node

visits every node.

An Undirected graph

Adjacency Matrix

A B C D E

A

B

C

D

E

Implementation

We start at vertex ‗A‘. Then Mark A as visited and call DFS (B) recursively, Dfs (B) Marks

B as visited and calls Dfs(c) recursively.

Fig. 4.5.1 (a)

0 1 0 1 1

1 0 1 1 0

0 1 0 1 1

1 1 1 0 0

1 0 1 0 0

Non Linear Data Structures - Graphs 4.1

A

B

C

A

B

C

D

A

B

C

D
E

Dfs (c) marks C as visited and calls Dfs (D) recursively. No recursive calls are made to Dfs

(B) since B is already visited.

Fig. 4.5.1 (b)

Dfs(D) marks D as visited. Dfs(D) sees A,B,C as marked so no recursive call is made there,

and Dfs(D) returns back to Dfs(C).

Fig. 4.5.1 (c)

Dfs(C) calls Dfs(E), where E is unseen adjacent vertex to C.

Fig. 4.5.1 (d)

Non Linear Data Structures - Graphs 4.1

/* Assume that the graph is read into an adjacency matrix and that the indegrees are

computed for every vertices and placed in an array (i.e. Indegree []) */

void Topsort (Graph G)

{

Queue Q ;

int counter = 0;

Vertex V, W ;

Q = CreateQueue (NumVertex);

Makeempty (Q);

for each vertex V

if (indegree [V] = = 0)

Enqueue (V, Q);

while (! IsEmpty (Q))

{

V = Dequeue (Q);

TopNum [V] = + + counter;

Since all the vertices starting from ‗A‘ are visited, the above graph is said to be connected.

If the graph is not connected, then processing all nodes requires reversal calls to Dfs, and each

generates a tree. This entire collection is a depth first spanning forest.

4.6 TOPOLOGICAL SORT

A topological sort is a linear ordering of vertices in a directed acyclic graph such that if

there is a path from Vi to Vj, then Vj appears after Vi in the linear ordering.

Topological ordering is not possible. If the graph has a cycle, since for two vertices v and w

on the cycle, v precedes w and w precedes v.

To implement the topological sort, perform the following steps.

Step 1 : - Find the indegree for every vertex.

Step 2 : - Place the vertices whose indegree is ‗0‘ on the empty queue.

Step 3 : - Dequeue the vertex V and decrement the indegree‘s of all its adjacent

vertices.

Step 4 : - Enqueue the vertex on the queue, if its indegree falls to zero.

Step 5 : - Repeat from step 3 until the queue becomes empty.

Step 6 : - The topological ordering is the order in which the vertices dequeued.

Routine to perform Topological Sort

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Non Linear Data Structures - Graphs 4.1

Note :

Enqueue (V, Q) implies to insert a vertex V into the queue Q.

Dequeue (Q) implies to delete a vertex from the queue Q.

TopNum [V] indicates an array to place the topological numbering.

Example 1 :

a b c d

a

b

c

d

Fig. 4.6.1 Adjacency Matrix

Step 1

Number of 1‘s present in each column of adjacency matrix represents the indegree of the

corresponding vertex.

In fig 4.6.1 Indegree [a] = 0 Indegree [b] = 1

Indegree [c] = 2 Indegree [d] = 2

Step 2

Enqueue the vertex, whose indegree is ‗0‘

In fig 4.6.1 vertex ‗a‘ is 0, so place it on the queue.

Step 3

Dequeue the vertex ‗a‘ from the queue and decrement the indegree‘s of its adjacent vertex

‗b‘ & ‗c‘

Hence,Indegree [b] = 0 and Indegree [c] = 1

for each W adjacent to V

if (--Indegree [W] = = 0)

Enqueue (W, Q);

}

if (counter ! = NumVertex)

Error (― Graph has a cycle‖);

DisposeQueue (Q); /* Free the Memory */

}

a

b c

d

0 1 1 0

0 0 1 1

0 0 0 1

0 0 0 0

Administrator
Typewriter
b

Administrator
Typewriter
c

Administrator
Typewriter
d

Non Linear Data Structures - Graphs 4.1

V1 V2

V3 V4 V5

V6 V7

Now, Enqueue the vertex ‗b‘ as its indegree becomes zero.

Step 4

Dequeue the vertex ‗b‘ from Q and decrement the indegree‘s of its adjacent vertex ‗c‘ and ‗d‘.

Hence, Indegree [c] = 0 and Indegree [d] = 1

Now, Enqueue the vertex ‗c‘ as its indegree falls to zero.

Step 5

Dequeue the vertex ‗c‘ from Q and decrement the indegree‘s of its adjacent vertex ‗d‘.

Hence, Indegree [d] = 0

Now, Enqueue the vertex ‗d‘ as its indegree falls to zero.

Step 6

Dequeue the vertex ‗d‘.

Step 7

As the queue becomes empty, topological ordering is performed, which is nothing but, the

order in which the vertices are dequeued.

VERTEX 1 2 3 4

a 0 0 0 0

b 1 0 0 0

c 2 1 0 0

d 2 2 1 0

ENQUEUE a b c d

DEQUEUE a b c d

Result of Applying Topological Sort to the Graph in Fig. 4.6.1

Example 2 :

Fig 4.6.2

Non Linear Data Structures - Graphs 4.1

Adjacency Matrix :-

V1 V2 V3 V4 V5 V6 V7

V1

V2

V3

V4

V5

V6

V7

INDEGREE

0 1 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 0

0 0 1 0 0 1 1

0 0 0 1 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 1 2 3 1 3 2

Indegree [V1] = 0 Indegree [V2] = 1 Indegree [V3] = 2

Indegree [V4] = 3 Indegree [V5] = 1 Indegree [V6] = 3

Indegree [V7] = 2
INDEGREE BEFORE DEQUEUE #

VERTEX 1 2 3 4 5 6 7

V1 0 0 0 0 0 0 0

V2 1 0 0 0 0 0 0

V3 2 1 1 1 0 0 0

V4 3 2 1 0 0 0 0

V5 1 1 0 0 0 0 0

V6 3 3 3 3 2 1 0

V7 2 2 2 1 0 0 0

ENQUEUE V1 V2 V5 V4 V3, V7 V6

DEQUEUE V1 V2 V5 V4 V3 V7 V6

Result of Applying Topological Sort to the Graph in Fig. 4.6.2

The topological order is V1, V2, V5, V4, V3, V7, V6

Analysis

The running time of this algorithm is 0 E

represents the vertices of the graph.

4.7 BICONNECTIVITY

+ V . where E represents the Edges & V

A connected undirected graph is biconnected if there are no vertices whose removal

disconnects the rest of the graph.

Non Linear Data Structures - Graphs 4.1

A connected undirected graph is biconnective if there are no vertices whose removal

disconnects the rest of the graph.

• A biconnected undirected graph is a connected graph that is not broken into

disconnected pieces by deleting any single vertex (and its incident edges).

• A biconnected directed graph is one such that for any two vertices v and w there are

two directed paths from v to w which have no vertices in common other than v and

w.

• If a is not bio-connected, the vertices whose removal would disconnect the graph is

called articulation points.

4.7.1 Equivalent definitions of a biconnected graph G:

• Graph G has no separation edges and no separation vertices

• For any two vertices u and v of G, there are two disjoint simple paths between u and

v (i.e., two simple paths between u and v that share no other vertices or edges)

• For any two vertices u and v of G, there is a simple cycle containing u and v.

4.7.2. Properties of Biconnected Graphs

• There are two disjoint paths between any two vertices.

• There is a simple cycle through any two vertices.

Example:

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Highlight

Administrator
Highlight

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Non Linear Data Structures - Graphs 4.1

4.7.3. Biconnected Components

• Biconnected component of a graph G

• A maximal biconnected subgraph of G, or

• A subgraph consisting of a separation edge of G and its end vertices

• Interaction of biconnected components

• An edge belongs to exactly one biconnected component

• A nonseparation vertex belongs to exactly one biconnected component

• A separation vertex belongs to two or more biconnected components

• Example of a graph with four biconnected components ORD PVD

Given a graph having N vertices and M edges, count the number of biconnected components

having odd number of vertices and even number of vertices.

Input:

First line consists of two space separated integers N and M.

M lines follow each containing two space separated integers X and Y denoting there is an edge

between vertices X and Y.

Output:

Print two space separated integers where first integer denotes the number of biconnected

components having odd number of vertices and second integer denotes number of biconnected

components having even number of vertices.

Constraints:

1 N 10

1 M N N12

0 X, Y N

Non Linear Data Structures - Graphs 4.1

B A

C D

F

E
G

B A

C D

F

E
G

4.8 ARTICULATION POINTS OR CUT VERTEX

The vertices whose removal would disconnect the graph are known as articulation points.

Fig. 4.8 Connected Undirected Graph

Here the removal of ‗C‘ vertex will disconnect G from the graph.

Similarly removal of ‗D‘ vertex will disconnect E & F from the graph. Therefore ‗C‘ & ‗D‘

are articulation points.

Fig. 4.8 (a) Removal of vertex ‘C’

Administrator
Pencil

Administrator
Pencil

Non Linear Data Structures - Graphs 4.1

D

Fig. 4.8 (b) Removal of vertex ‘D’

The graph is not biconnected, if it has articulation points.

Depth first search provides a linear time algorithm to find all articulation points in a con-

nected graph.

Steps to find Articulation Points :

Step 1 : Perform Depth first search, starting at any vertex

Step 2 : Number the vertex as they are visited, as Num (v).

Step 3 : Compute the lowest numbered vertex for every vertex v in the Depth first

spanning tree, which we call as low (w), that is reachable from v by taking

zero or more tree edges and then possibly one back edge. By definition, Low(v)

is the minimum of

(i) Num (v)

(ii) The lowest Num (w) among all back edges (v, w)

(iii) The lowest Low (w) among all tree edges (v, w)

Step 4 : (i) The root is an articulation if and only if it has more than two children.

(ii) Any vertex v other than root is an articulation point if and only if v has

same child w such that Low (w) Num (v), The time taken to compute

this algorithm an a graph is 0 E + V .
Note

For any edge (v, w) we can tell whether it is a tree edge or back edge merely by checking

Num (v) and Num (w).

If Num (w) > Num (v) then the edge is a back edge.

B A

C

G

F

E

Non Linear Data Structures - Graphs 4.2

void AssignLow (Vertex V)

{

Vertex W;

Low [V] = Num [V]; /* Rule 1 */

for each W adjacent to V

{

If (Num [W] > Num [V]) /* forward edge */

{

Assign Low (W);

If (Low [W]> = Num [V])

Printf (―% V is an articulation pt \n‖, V);

Low[V] = Min (Low [V], Low[W]); /* Rule 3*/

}

else

if (parent [V] ! = W) /* Back edge */

Low [V] = Min (Low [V], Num [W])); /* Rule 2*/

}

}

Tree edge (v, w)

v w

Num (v) = 1 Num (w) = 2

Back edge (w, v)

Fig. 4.8.3

Routine to compute low and test for articulation points

Non Linear Data Structures - Graphs 4.2

Fig. 4.8.4 Depth First Tree For Fig (4.8) With Num and Low.

Low can be computed by performing a postorder traversal of the depth - first spanning tree. (ie)

Low (F) = Min (Num (F), Num (D))

/* Since there is no tree edge & only one back edge */

= Min (6, 4) = 4

Low (F) = 4

Low (E) = Min (Num (E), Low (F))

/* there is no back edge */.

= Min (5, 4) = 4

Low (D) = Min (Num (D), Low (E), Num (A))

= Min (4,4,1) = 1

Low (D) = 1

Low (G) = Min (Num (G)) = 7 /* Since there is no tree edge & back edge */

Low (C) = Min (Num (C), Low (D), Low (G))

= Min (3,1,7) = 1

Low (C) = 1 .

lllly Low (B) = Min (Num (B), Low (C))

= Min (2,1) = 1

Low (A) = Min (Num (A), Low (B))

= Min (1, 1) = 1

Low (A) = 1.

A

(1/1)

B

(2/1)

C
(3/1)

D
(4/1)

G
 (7/7)

E
(5/4)

F
(6/4)

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Non Linear Data Structures - Graphs 4.2

From fig (4.8) it is clear that Low (G) > Num (C) (ie) 7 > 3 /* if Low (W) Num (V)*/ the ‗v‘ is

an articulation pt Therefore ‗C‘ is an articulation point.

lllly Low (E) = Num (D), Hence D is an articulation point.

4.9 EULER’S CIRCUIT

Euler path

A graph is said to be containing an Euler path if it can be traced in 1 sweep without

lifting the pencil from the paper and without tracing the same edge more than once. Vertices

may be passed through more than once. The starting and ending points need not be the

same.

Euler circuit

An Euler circuit is similar to an Euler path, except that the starting and ending points

must be the same.

It is interesting that Euler never published an algorithm for finding an Euler circuit,

but only provided a method of determining if one existed or not. In a note from Ed Sandifer

he states, ―In his paper on the Konigsberg Bridge Problem, all he says about finding such

paths is that if you remove all double edges, then it will be easy to find a solution‖.

Euler went on to generalize this mode of thinking, laying a foundation for graph

theory. Using modern vocabulary, we make the following definitions and prove at theorem:

Definition:

A network is a figure made up of points (vertices) connected by non-intersecting

curves (arcs).

Definition:

A vertex is called odd if it has an odd number of arcs leading to it, otherwise it is

called even.

Definition:

An Euler path is a continuous path that passes through every are once and only once.

Theorem:

If a network has more than two odd vertices, it does not have an Euler path.

Euler also proved this:

Theorem:

If a network has two or zero odd vertices, it has atleast one Euler path. In particular,

if a network has exactly two odd vertices, then its Euler paths can only start on one of the

odd vertices, and end on the other -- a type of Euler path called an Euler circuit.

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Non Linear Data Structures - Graphs 4.2

Problem

The seven bridges of konigsberg

Fig. 4.9

The river Pregel separates the city of Konigsberg into 4 separate regions and the
regions are connected by 7 bridges. In the summer evenings, the citizens of the country
would like to have a walk around the whole city. Some curious citizens wondered whether
it is possible to begin at one of the regions, cross each bridge exactly once and return to
the same starting point. Can the citizen‘s suggestion be made possible?

Solution:

We can observe that each vertex has an odd number of edges. For example, vertex A
is of degree 5 and vertex B is of degree 3. Therefore the citizen‘s suggestion is impossible.
As each edge can be used only once and all vertices are odd, it is impossible to re-enter

any vertex again after leaving it, and this makes starting and ending at the same point
impossible.

Problems

For each of the networks below, determine whether it has an Euler path. If it does,
find one.

Graph 1 Graph 2

Graph 3

Graph 4 Graph 4 Graph 6

Fig. 4.9

Non Linear Data Structures - Graphs 4.2

Graph

Number of odd

vertices(vertices

connected to an odd

number of edges)

Number of even

vertices (vertices

connected to an

even number of

edges

What does the path contain?

(Euler path = P;

Euler circuit = C;

Neither = N)

1 0 10 C

2 0 6 C

3 2 6 P

4 2 4 P

5 4 1 N

6 8 0 N

From the above table, we can observe that:

1. A graph with all vertices being even contains an Euler circuit.

2. A graph with 2 odd vertices and some even vertices contains an Euler path.

3. A graph with more than 2 odd vertices does not contain any Euler path or circuit.

4.10. APPLICATIONS OF GRAPHS

1. Social network graphs: to tweet or not to tweet. Graphs that represent who knows whom,

who communicates with whom, who influences whom or other relationships in

socialstructures. An example is the twitter graph of who follows whom. These can be used

to determine how information flows, how topics become hot, how communities develop,

or even who might be a good match for who, or is that whom.

2. Transportation networks. In road networks vertices are intersections and edges are the

road segments between them, and for public transportation networks vertices are stops and

edges are the links between them. Such networks are used by many map programs such as

Google maps, Bing maps and now Apple IOS 6 maps (well perhaps without the public

transport) to find the best routes between locations. They are also used for studying traffic

patterns, traffic light timings, and many aspects of transportation.

3. Utility graphs. The power grid, the Internet, and the water network are all examples of

graphs where vertices represent connection points, and edges the wires or pipes between

them. Analyzing properties of these graphs is very important in understanding the reliability

of such utilities under failure or attack, or in minimizing the costs to build infrastructure

that matches required demands.

4. Document link graphs. The best known example is the link graph of the web, where each

web page is a vertex, and each hyperlink a directed edge. Link graphs are used, for example,

to analyze relevance of web pages, the best sources of information, and good link sites.

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Non Linear Data Structures - Graphs 4.2

5. Protein-protein interactions graphs. Vertices represent proteins and edges represent

interactions between them that carry out some biological function in the cell. These graphs

can be used, for example, to study molecular pathways—chains of molecular interactions

in a cellular process. Humans have over 120K proteins with millions of interactions among

them.

6. Network packet traffic graphs. Vertices are IP (Internet protocol) addresses and edges

are the packets that flow between them. Such graphs are used for analyzing network security,

studying the spread of worms, and tracking criminal or non-criminal activity.

7. Scene graphs. In graphics and computer games scene graphs represent the logical or spacial

relationships between objects in a scene. Such graphs are very important in the computer

games industry.

8. Finite element meshes. In engineering many simulations of physical systems, such as the

flow of air over a car or airplane wing, the spread of earthquakes through the ground, or the

structural vibrations of a building, involve partitioning space into discrete elements. The

elements along with the connections between adjacent elements forms a graph that is called

a finite element mesh.

9. Robot planning. Vertices represent states the robot can be in and the edges the possible

transitions between the states. This requires approximating continuous motion as a sequence

of discrete steps. Such graph plans are used, for example, in planning paths for autonomous

vehicles.

10. Neural networks. Vertices represent neurons and edges the synapses between them. Neural

networks are used to understand how our brain works and how connections change when

we learn. The human brain has about 1011 neurons

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Non Linear Data Structures - Graphs 4.2

A B

C D

PART - A

1. Define a graph

2. Compare directed graph and undirected graph

3. Define path, degree and cycle in a graph

4. What is an adjacency matrix?

5. Give the adjacency list for the following graph

6. Define Topological Sort

7. Define Shortest path problem. Give examples

8. Define Minimum Spanning Tree and write its properties.

9. What is DAG? Write its purpose

10. What are the different ways of traversing a graph?

11. What are the various applications of depth first search?

12. What is an articulation point?

13. When a graph is said to be bi-connected?

14. Write down the recursive routine for depth first search.

15. Write a procedure to check the biconnectivity of the graph using DFS.

16. Define Class_NP

17. What is meant by NP_Complete problem?

18. Define Euler oath and Euler circuit.

19. Write the routine for Breadth first traversel.

Non Linear Data Structures - Graphs 4.2

B G

5 2 3 1

A
 2

7

C
 7

2

F

2 1
D 7 E

A B

4 4 2 3

C
 5

D
 11

E

2 1

6 3
F 4 G

V1 V2

V3 V4 V5

V6 V7

PART - B

1. What is Topological Sort? Write down the pseudocode to perform

topological sort and apply the same to the following graph.

2. Explain the Dijkstra‘s algorithm and find the shortest path from A to all

other vertices in the following graph.
1

3. Explain Prim‘s and Kruskal‘s algorithm in detail and find the minimum

spanning tree for the following graph.
3

4. Find all the articulation points in the given graph. Show the depth_first

spanning tree and the values of Num and Low for each vertex.

B E

C F H

A

